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A common task in applied finance is measuring the correlation between returns for two 
series, but daily financial time-series are often observed at different times: for example 
the FTSE stock index “close” is about 11am NY time while the S&P 500 stock index 
closes about 4pm NY time.  In such a case the naïve correlation estimator is biased, often 
substantially so.  This paper discusses strategies for estimating the correlation in the face 
of such non-contemporaneous observations.  A detailed discussion of the problem is in a 
companion paper, Coleman (2007) on the web at http://ssrn.com/abstract=987119. 
 
I focus on the case where series are serially independent and normally distributed.  Even 
in this idealized case estimation can be challenging.  Building on earlier work of Robb 
(1987) and Kahya (1998) I propose a pseudo-maximum likelihood estimator and two, 
much simpler, method-of-moment estimators.  I compare these using simulations and 
derive some approximate expressions for standard errors (relative to the 
contemporaneous-data case). 
 
One important conclusion from the simulations is that the standard error of the 
correlation estimator can be quite high relative to the contemporaneous observation case.  
In contrast the standard error for the covariance is not dramatically higher.  The inference 
seems to be that one can obtain reasonably good (moderate standard-error) estimates of 
the covariance even though data are non-contemporaneous, but one cannot obtain joint 
information about the covariance and variances with the same degree of confidence.  The 
problem seems to be that the non-overlapping data introduce enough random variation 
that one has difficulty estimating variances and covariances jointly, although one can 
determine each separately. 
 

                                                 
1 I would like to thank John Teall for help and advice, and Sandy Grossman for pointing out the non-trivial 
nature of this problem.  Errors are my own. This paper is available for download at 
www.hilerun.org/tsc/noncontemp_mini.pdf.  The detailed companion paper is available for download at 
http://papers.ssrn.com/abstract=987119 
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Consider the FTSE and S&P indexes.  If we assume that prices are observed as 
contemporaneous “snap-shots” at both 11am and 4pm (i.e. twice per day as shown in the 
diagram below) there would be no problem.  We would simply have returns over unequal 
time-periods (five hours and 19 hours) but we could easily implement a maximum 
likelihood estimator.   
 

Contemporaneous Sampling Scheme 
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The sampling scheme above does not apply since in reality we cannot get a price snap-
shot for the FTSE at 4pm NY time.  So we have the non-contemporaneous but 
overlapping sampling scheme as outlined below: the FTSE return for Wednesday 
(closing Wednesday 11am) overlaps both the Tuesday and the Wednesday S&P return.  
This does, however, point us in the direction of a simple set of estimators, the method-of-
moment (MoM) estimators.  
Non-Contemporaneous Sampling Scheme 
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Naïve and Method-of-Moments Estimators 
 
The observed returns are partially overlapping but they are composed of (unobserved) 
pieces that are alternately overlapping and not.  Treating the observed returns as 
composed of unobserved pieces one can write the variance of the returns  x  as: 
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   V(x)  =  V(x0) + V(x1)  =  t0⋅σx
2  +  t1⋅σx

2  
 
Similarly the variance of  y  will be: 
 
   V(y)  =  V(y1) + V(y0)  =  t1⋅σy

2  +  t0⋅σy
2 . 

 
Most importantly, consider the covariance across the t1-overlap data: 
 
        t1-overlap data (“same-day” data) 

t0 t0t1

x0 x1

y1 y0

unobserved 

observed 

observed 

unobserved 

xt0t1

yt1t0

 
 Cov(xt0t1,yt1t0)  =  Cov(x0,y1) + Cov(x0,y0) + Cov(x1,y1) + Cov(x1,y0)  
 
with all except  (x1,y1)  being independent.  This means 
 
   Cov(xt0t1,yt1t0)  =  t1⋅σxy / σx⋅σy   
 
(presuming that  t1+t0=1; otherwise the factor  1/(t1+t0)  will appear).  The population 
correlation coefficient will be 
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The naïve correlation estimator (the ratio of sample covariance to variances) is biased in 
that it converges in probability to  t1⋅ρ: 2  
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The bias can be removed simply by dividing by  t1 (assuming (t1+t0)=1):   
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2 This presumes t1+t0=1. If not the bias will be t1/(t1+t0). 
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We call this the method-of-moments t1-separate estimator because it replaces population 
by sample moments and uses t1-overlap data.  Asymptotically this estimator will be 
consistent but in small samples may be outside the range [-1,1]. 
 
One could also use t0-overlap data: 
 
           t0-overlap data (“y-lagged” data) 

t0 t0t1

x0 x1

y1 y0

unobserved 

observed 

observed 

unobserved 

x’t0t1

yt1t0

t1

 
  Cov(x′t0t1,yt1t0)  =  Cov(x0,y1) + Cov(x0,y0) + Cov(x1,y1) + Cov(x1,y0)  
 
Here all except  (x0,y0)  are independent.  This means 
 
    Cov(x′t0t1,yt1t0)  =  t0⋅σxy / σx⋅σy   
 
and leads directly to a method-of-moments t0-separate estimator for the correlation as: 
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This provides a second consistent estimator of the correlation but once again for small 
samples it may be outside the interval [-1,1].   
 
We can combine the two estimators to give a method-of-moments combined estimator, 
by taking a weighted average (essentially as Kahya 1998 does): 
 
(1c)   ( ) ( )010

,0
1

,1 / tttt mmsmmsmmc +⋅+⋅= ρρρ )))   . 
 
For small samples this actually produces two estimators, depending on whether one 
applies the restriction  -1≤ρ≤1  to the separate estimates before averaging or to the 
combined estimator after averaging.  Simulation results show that the better choice is the 
latter, applying the restriction to the combined estimator after averaging. 
 
A natural way to estimate parameters such as the correlation coefficient is by maximum 
likelihood.  Unfortunately, for overlapping FTSE and S&P daily data the density function 
(and thus the likelihood function) does not simplify as it does in the usual 
contemporaneous case.  The companion paper (Coleman 2007) discusses some tricks that 
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allow one to derive a maximum likelihood and pseudo-maximum likelihood estimator.  
The pseudo-ML estimator combines the t1-overlap and t0-overlap data in an optimal 
manner but there is no simple solution to the first order conditions so that one must turn 
to numerical optimization techniques.  In addition there is nothing that ensures the 
estimator  ρ ∈[-1,1]  so that constrained optimization must be used.  This all makes the 
pseudo-ML estimator computationally difficult. 
 
The pseudo-maximum likelihood estimator combines data optimally but is 
computationally intensive while the alternative MoM estimators are simple but may not 
be as efficient in all cases.  A summary of the estimators I investigate is as follows: 
• Pseudo-ML Combined estimator using the likelihood function (11) as for the ML 

Combined estimator but with complete (non-independent) t1-overlap and t0-overlap 
data.  Using complete data has the benefit of not throwing out data.   

• Method-of-Moments Separate estimators using complete (non-independent) t1-
overlap and t0-overlap data separately to give two sets of estimators.  This gives 
simple analytic formulae but again provides two estimators what will generally give 
different values. 

• Method-of-Moments (MoM) Combined estimator using a weighted average of the 
method-of-moments separate estimators for the correlation coefficient. 

 
Tables 1 through 5 below show simulation results comparing the three estimators: 
pseudo-ML combined, MoM separate, and MoM combined.3  The simulations show the 
following: 
 
Correlation estimators 
 
The following observations are likely to be general, even though generalizing from a 
limited number of simulations is delicate: 
• The pseudo-ML estimator uniformly performs as well or better (lower bias and 

standard error) than the alternate estimators considered.  This is likely to be true more 
generally because the pseudo-ML estimator combines t0-overlap and t1-overlap data in 
a more efficient manner than alternate estimators.  The better performance of the 
pseudo-ML estimator is more dramatic for |ρ|>>0. 

• For  t1 = t0  the MoM combined estimator performs as well as the pseudo-ML 
estimator.  This is likely to be more general because when  t1 = t0  the separate MoM 
estimators are, in a sense, balanced and it is reasonable to think that a simple average 
combines the information optimally. 

• For  t1 >> t0  the MoM t1-separate estimator performs almost as well as the pseudo-ML 
estimator (standard errors almost as low), while the MoM combined estimator 
performs less well.  As  t0 → 0  this is not surprising since we move to the 
contemporaneous observations case.  What is a little surprising is that this happens 
even for  t1 = 0.8.   

                                                 
3 Results for the naïve estimator are not shown. The naïve estimator is biased and converges to ti⋅ρ and the 
simulations reflect that fact.  Each simulation is the result of 10,000. 
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• All estimators appear biased towards zero with the bias greater for larger  ρ,  smaller 
number of observations, and balanced data  (t1 = t0). 

 
The MoM estimators are less computationally burdensome than the pseudo-ML estimator 
but perform almost as well in certain cases, and it would be useful to have a rule 
specifying when to use the combined versus separate estimator.  A simple, though ad-hoc 
rule, is to use the MoM combined or separate estimator depending on which has the 
lower standard error relative to the contemporaneous observation case.  The following 
section develops some approximate formulae for the ratio of non-contemporaneous to 
contemporaneous standard errors (equations 13b and 13c), and these formulae can be 
used to implement such a rule.  Note, however, that the pseudo-ML estimator should 
always have lower standard error than the MoM estimators under the maintained 
distributional assumptions. 
 
Standard Errors - Variances 
 
Standard errors for variances should be the same as in the contemporaneous case 
(accounting for reduced number of observations for ML estimators) since the variances 
depend on each series independently.  The simulations bear this out. 
 
Standard Errors - Covariance 
 
The standard errors for non-contemporaneous estimators should be larger than for 
contemporaneous estimators.  The simulations show that they are but not dramatically so.   
Tables 1 through 5 show the covariance estimator for the pseudo-ML combined 
estimators, together with the sample standard error and asymptotic standard error for the 
contemporaneous case (labeled “Theor SE”).  The sample standard errors are between 
1.1x and 1.8x the contemporaneous-case asymptotic standard errors.  For example, table 
1 shows that with  ρ=0.8  and 480 observations the sample standard error is 0.0060 or 
1.67x the asymptotic standard error for a contemporaneous ML estimator of 0.0036.  
When the overlap is not balanced (table 2 with  t0=0.2) the sample standard error is 
0.0042 or 1.18x the asymptotic or theoretical value of 0.0036. 
 
 
In the companion paper (Coleman 2007) I provide some heuristic arguments to derive an 
approximate expression for the ratio of the non-contemporaneous to the 
contemporaneous-case asymptotic sample standard error: 
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For  t0=t1=0.5  this will vary from 2.0 to 1.6 as  ρ  varies from 0 to 1, while for  t1=0.8  it 
varies from 1.25 to 1.13.  I do not report the covariances for the separate estimators in the 
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following tables, but examination of the detailed simulations shows that they match 
expression (13a) well.   
 
One important point is that although the standard errors for the covariance in the non-
contemporaneous case are larger than for the contemporaneous case, they are not 
dramatically so.   
 
Standard Errors – Correlation 
 
In contrast to the covariance, the standard errors for correlation estimators are 
dramatically larger than for the contemporaneous observations.  Examination shows that 
they range from roughly 1.3x the contemporaneous case up to 4x the contemporaneous 
case or more. 
 
In the companion paper I provide some heuristic arguments to derive an approximate 
expression for the ratio of the non-contemporaneous to the contemporaneous-case 
asymptotic sample standard error: 
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Although this expression is not derived specifically for the MoM separate estimators, it 
appears to apply reasonably well.  The first term is the contribution from the “noise” of 
the independent normals.  For  |ρ|>>0  this can be very large relative to the second term.  
The best case (lowest contribution from the “noise”) will be for  ρ=0.  For  t0=t1=0.5  
(13b) ranges from 2.0 to 4.9 as  ρ  ranges from 0 to 0.8, and increases without limit at  ρ  
tends towards  ±1.  For  t0=0.2  the expression ranges from 1.25 to 2.3 and up to  ∞  as  ρ  
goes from 0 to 0.8 and toward 1.  Figure 3 shows expression (13b) for correlation 
between 0 and 0.9 and for overlap (t1) between 0.95 and 0.5.  
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Figure 3 – Ratio of Non-contemporaneous to Contemporaneous Standard Error for 
Correlation Separate Estimator, Predicted by Expression (13b) 
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The simulations show that this expression is roughly correct.  In table 1, for example, 
with  ρ=0.8,  t0=t1,  and 480 observations the rho1-separate estimator has a sample 
standard error of0.079, 4.8x the asymptotic standard error of0.016, versus the above 
expression which predicts 4.9x.  In table 3 with ρ=0.0,  t0=0.2,  and 480 observations the 
rho1-separate estimator has a sample standard error of0.057, 1.25x the asymptotic value, 
the same as predicted by the above expression.  Figure 4 shows the two slices through 
figure 1 corresponding to overlaps  t1=0.5  and  t1=0.8, together with the simulation 
results for MoM separate estimators.  From this one can see that expression (13b) 
matches the simulation results quite well.  We have also included the pseudo-ML 
simulation results.  For equal overlap  (t1=t0=0.5)  they are below the ML separate (for  
ρ=0.8,  3.1 versus 4.6) while for  t1=0.8  they are indistinguishable from the 
corresponding results for the separate estimators. 
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Figure 4 – Ratio of Non-contemporaneous to Contemporaneous Standard Error for 
Separate Correlation Estimator, Predicted by Expression (13b) and Simulation for ML 

Predicted vs. Simulation, Correlation, MoM Separate

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pred, t1=.5 Sim, t1=.5 Pred, t1=.8 Sim, t1=.8 PML Sim, t1=.5
 

 
 
The conclusion is that for the correlation estimator, the standard errors can be 
substantially larger than for the contemporaneous case, and particularly when  |ρ|>>0.  
Expressions (13a) and (13b) show that the non-overlapping “noise”  (x0  and  y0)  
substantially affects the precision of the correlation estimator when  |ρ|>>0  but much 
less so the covariance estimator.  They allow us to draw some tentative conclusions about 
how the precision of the separate estimators is likely to vary as the degree of overlap and 
the underlying correlation varies.   
 
For the MoM combined estimator expression (13b) for t1-overlap and t0-overlap can be 
combined to give: 
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This expression is shown in Figure 5 for correlation between 0 and 0.9 and for overlap 
(t1) between 0.95 and 0.5.  Note that in contrast to expression (13b) for the separate 
estimator the SE ratio is much better behaved for equal overlap (t1=t0=0.5) but much 
worse behaved for large overlap (e.g. for t1=0.8). 
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Figure 5 – Ratio of Non-contemporaneous to Contemporaneous Standard Error for 
Combined Correlation Estimator, Predicted by Expression (13c) 
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Expression (13c) matches the simulations for the MoM combined estimator pretty well, 
as shown in figure 6, which shows two slices through the surface.  For  t1=0.5  and  t1=0.8  
the simulation results for the MoM combined estimator are virtually the same and cannot 
be distinguished in the graphic.  Figure 6 also includes the simulation results for the 
pseudo-ML estimator for  t1=0.8,  where the standard error is lower than for the MoM 
combined.  (For equal overlap,  t1=0.5,  the pseudo-ML is indistinguishable from the 
MoM combined.) 
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Figure 6 – Ratio of Non-contemporaneous to Contemporaneous Standard Error for 
Correlation MoM Combined Estimator, Predicted by Expression (13b) and Simulation 
for Pseudo-ML 

Predicted vs. Simulation, Correlation, MoM Combined
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The conclusion seems to be: 
• In all cases the pseudo-ML estimator has the lowest standard error relative to the 

contemporaneous-observation case (versus the MoM separate or the MoM combined 
estimators) 

• For large overlap (e.g.  t1=0.8)  the MoM separate estimator performs as well as the 
pseudo-ML estimator and substantially better than the MoM combined estimator 

• For equal overlap the reverse is true, with the MoM combined estimator performing as 
well as the pseudo-ML estimator and substantially better than the MoM separate 
estimator. 

 
This suggests a possible ad-hoc strategy using the MoM estimators rather than the more 
computationally intensive pseudo-ML estimator: Choose the MoM separate versus 
combined estimator based on expressions (13b) and (13c).  If (13b) is lower this indicates 
the MoM separate estimator likely has lower standard error relative and vice versa.  
Figure 7 shows the difference between (13b) and (13c): a negative number indicates the 
MoM separate estimator likely has lower standard error.  In practice we might use the 
separate estimator for  t1≈>0.70  and the combined estimator 0.35≈<t1≈<0.65.  This 
proposed strategy is ad-hoc for two reasons.  First, expressions (13b) and (13c) are only 
approximate and heuristic, although the simulations show they work reasonably well in 
specific cases.  Second, there is some dependence on the correlation itself: at  ρ=0.2  the 
cross-over point between (13b) and (13c) is  t1=0.70  while at  ρ=0.8  it is at  t1=0.65.  
Note additionally that the MoM estimators will not always perform as well as the pseudo-
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ML estimator when the overlap is intermediate between large (t1→1) and equal  (t1= 
t0=0.5). 
 
 
Figure 7 – Difference Between Standard Error Ratio for Separate vs. Combined 
Estimators (Expression 13b less expression 13c) 
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For the maximum likelihood combined estimator we turn to the standard asymptotic 
result that the standard error will equal (the square root of) the diagonal of the inverse of 
the information matrix.  We assume that this might also apply for the pseudo-ML 
estimator, and the simulations show that this is at least reasonable.  In table 1 for  t1= t0  
and 480 observations the standard error from the simulation is 0.052 versus 0.054 for the 
average of the asymptotic ML standard errors (diagonals of the information matrix).  
When the degree of overlap changes to  t1=0.8  as in table 2 the simulation for 480 
observations gives sample standard error of 0.034 versus average of asymptotic ML 
errors of 0.031.  
 

Estimated Correlations for S&P 500, FTSE 100, Nikkei 225 
 
We apply the naïve, method-of-moments separate, simple MoM combined, and pseudo-
ML combined estimators to data for the S&P 500, FTSE 100, and Nikkei 225 stock 
indexes.  We use daily data covering the period 6 July 2006 through 16 May 2007, a total 
of 448 observations.  The following three diagrams show the overlap for the three pairs of 
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series, given that the Nikkei closes at 4pm Tokyo time, the FTSE at 4pm London time, 
and the S&P at 4pm New York time.  
 
 Overlap for FTSE 100 and S&P 500 Stock Indexes 
  M11a        M4p          T11a          T4p 
  |-- t0=5hr --|-- t1=19hr --|-- t0=5hr --|-- t1=19hr --| 
    <-----    FTSE    ----->   <-----    FTSE    ----->  
                <-----    S&P    ----->     <-----    S&P 
 t0 = 0.20833, t1 = 0.791667 
 
 Overlap for Nikkei 225 and S&P 500 Stock Indexes 
  M3a          M4p           T3a           T4p 
  |-- t0=13hr --|-- t1=11hr --|-- t0=13hr --|-- t1=11hr --| 
     <-----    NKY    ----->     <-----    NKY    ----->  
                 <-----    S&P    ----->     <-----    S&P 
 t0 = 0.541667, t1 = 0.458333 
 
 Overlap for Nikkei 225 and FTSE 100 Stock Indexes 
  M3a        M11a           T3a          T11a 
  |-- t0=8hr --|-- t1=16hr --|-- t0=8hr --|-- t1=16hr --| 
    <-----    NKY    ----->     <-----    NKY    ----->  
                 <-----   FTSE    ----->     <-----   FTSE 
 t0 = 0.33333, t1 = 0.66667 
 
When using actual data one immediately encounters the problem of holidays and 
weekends.  For now we pretend that all business days are the same, but a possible 
relaxation of this assumption is discussed in the next section. 
 
Table 5 shows the various estimates.  Focusing for now on the S&P and FTSE, the naïve 
estimator (ignoring that data are non-contemporaneous) gives a correlation of 0.439.  The 
MoM separate estimator (simply adjusting for the length of the t1-overlap) raises the 
estimate to 0.555.  Using the t0-overlap data gives an estimate of 1.176, above 1.4  The 
pseudo-ML estimator is close to the t1-overlap estimator at 0.576 while the MoM 
combined estimator is higher at 0.684.  In this case the simple ad-hoc rule – use the MoM 
separate t1-estimator for t1≈>0.70  – would lead to using the separate estimator and an 
answer close to the pseudo-ML estimate.5   
 
 

                                                 
4 The pattern that the MoM separate t0-overlap estimator is higher than the t1-overlap estimator is 
consistent for all three pairs.  This may be a result of assuming that price volatility is homogeneous over 
time, whereas in reality more events may occur during hours when markets are open.  A possible relaxation 
of that assumption is discussed in the next section. 
5 The naïve correlation between S&P and lagged FTSE is -0.05.  This is consistent with serial independence 
of returns since S&P today returns have no overlap with yesterday FTSE returns. For FTSE vs. lagged 
Nikkei it is -0.04 and for S&P vs. lagged Nikkei it is -0.07. 
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Table 5 – Various Estimates of Correlation Across Stock Indexes 
 FTSE / SPX NKY / FTSE NKY / SPX 

t1 – length of "same-day" overlap 0.792 0.667 0.458 
t0 – length of "next-day" overlap 0.208 0.333 0.542 
Naive estimator 0.439 0.333 0.133 
Meth-of-Mom separate, t1 data 0.555 0.499 0.291 
Meth-of-Mom separate, t0 data 1.176 0.718 0.613 
Meth-of-Mom combined 0.684 0.572 0.465 
Pseudo-ML combined 0.576 0.533 0.484 
   asymptotic SE 0.043 0.055 0.063 

 
 
For these three pairs of series the ad-hoc rule discussed in section 8 above seems to work, 
in giving results reasonably close to the pseudo-ML results.  For FTSE/SPX the overlap 
is large  (t1=0.79)  and the estimates from pseudo-ML and MoM separate are reasonably 
close.  For NKY/SPX the overlap is almost equal  (t1=0.46)  and the pseudo-ML and 
MoM combined estimates are close.  The NKY/FTSE is intermediate with the rule 
implying neither estimator is clearly preferred, and in this case neither estimator is 
particularly close to the pseudo-ML estimate.  
 

Conclusions and Extensions 
 
This paper has discussed various estimators for the correlation when observations are 
partially overlapping but not fully contemporaneous.  Via simulations I have investigated 
some of the estimators, together with their standard errors.  From the simulations we 
conclude that the pseudo-ML estimator works best.  I have proposed a simple, though 
somewhat ad-hoc rule to use the computationally-simpler MoM estimators: use the 
separate estimator when the overlap  t1≈>0.7  (or t0≈>0.7)  and use the MoM combined 
estimator when  0.35≈<t1≈<0.65.6  In all cases careful attention should be paid to the 
standard errors since they will be larger, sometimes substantially larger, than in the usual 
normal case.  Expressions (13b) and (13c) can be used to roughly estimate the non-
contemporaneous standard errors relative to the contemporaneous standard errors. 
 
 
 

                                                 
6 Note that the good performance of the MoM separate estimator for large overlap implies that for weekly 
data, where  t1>0.93,  simply adjusting the naïve correlation by the degree of overlap (i.e. using the MoM 
separate estimator) should work very well.   
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Table 1 – Simulation Results for 10,000 Trials – σxx=0.0400, σyy=0.0625, ρ=0.80, 
t1=t0=1/2 

 Pseudo-ML - full data Method-of-Moments 
 Mean StdErr Theor    Theor % not 
   SE ML SEs Mean StdErr SE [-1,+1]

30 obs        
     rho: t1-separate     0.749 0.261 0.066 27.0%
     rho: t0-separate     0.746 0.263 0.066 26.8%
     rho combined 0.776 0.183 0.066 0.218 0.776 0.183  15.4%
     variance ser 1 0.0398 0.0101 0.0102 0.0072    
     variance ser 2 0.0622 0.0160 0.0159 0.0113    
     covar comb 0.0389 0.0141 0.0117     
480 obs        
     rho: t1-separate     0.799 0.079 0.016 0.4%
     rho: t0-separate     0.799 0.078 0.016 0.4%
     rho comb 0.799 0.052 0.016 0.054 0.799 0.052  
     variance ser 1 0.0400 0.0026 0.0026 0.0018    
     variance ser 2 0.0625 0.0040 0.0040 0.0029    
     covar comb 0.0400 0.0040 0.0029     
"Theor SE" is the (asymptotic) standard error for the contemporaneous case, with formulae given in the text 

 
 
 
Table 2 – Simulation Results for 10,000 Trials – σxx=0.0400, σyy=0.0625, ρ=0.80, t1=4/5 

 Pseudo-ML - full data Method-of-Moments 
 Mean StdErr Theor    Theor % not 
   SE ML SEs Mean StdErr SE [-1,+1]

30 obs        
     rho: t1-separate     0.793 0.139 0.066 4.0%
     rho: t0-separate     0.530 0.608 0.066 45.0%
     rho combined 0.794 0.135 0.066 0.122 0.779 0.180  15.7%
     variance ser 1 0.0401 0.0102 0.0102 0.0072    
     variance ser 2 0.0624 0.0159 0.0159 0.0112    
     covar comb 0.0401 0.0131 0.0117     
480 obs        
     rho: t1-separate     0.799 0.034 0.016 
     rho: t0-separate     0.774 0.193 0.016 18.7%
     rho comb 0.799 0.034 0.016 0.031 0.799 0.051  
     variance ser 1 0.0400 0.0025 0.0026 0.0018    
     variance ser 2 0.0625 0.0040 0.0040 0.0028    
     covar comb 0.0400 0.0033 0.0029     
For 30 obs, 3 simulations exited from optimization routine before converging, 1 simulations gave non-pd 
jacobian 
"Theor SE" is the (asymptotic) standard error for the contemporaneous case, with formulae given in the text 
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Table 3 – Simulation Results for 10,000 Trials – σxx=0.0400, σyy=0.0625, ρ=0.0, t1=4/5 

 Pseudo-ML - full data Method-of-Moments 
 Mean StdErr Theor    Theor % not 
   SE ML SEs Mean StdErr SE [-1,+1]

30 obs        
     rho: t1-separate     0.002 0.227 0.183 
     rho: t0-separate     -0.068 0.816 0.183 28.3%
     rho combined 0.002 0.221 0.183 0.214 0.000 0.259  0.0%
     variance ser 1 0.0401 0.0102 0.0102 0.0073    
     variance ser 2 0.0624 0.0161 0.0159 0.0114    
     covar comb 0.0001 0.0111 0.0091     
480 obs        
     rho: t1-separate     0.000 0.057 0.046 
     rho: t0-separate     0.000 0.226 0.046 
     rho comb 0.000 0.055 0.046 0.055 0.000 0.065  
     variance ser 1 0.0400 0.0026 0.0026 0.0018    
     variance ser 2 0.0624 0.0040 0.0040 0.0028    
     covar comb 0.0000 0.0028 0.0023     
For 30 obs, 38 simulations exited from optimization routine before converging, 0 simulations gave non-pd 
jacobian 
"Theor SE" is the (asymptotic) standard error for the contemporaneous case, with formulae given in the text 

 
 
 
 
Table 4 – Simulation Results for 10,000 Trials – σxx=0.0400, σyy=0.0625, ρ=0.5, t1=1/2 

 Pseudo-ML - full data Method-of-Moments 
 Mean StdErr Theor    Theor % not 
   SE ML SEs Mean StdErr SE [-1,+1]

30 obs        
     rho: t1-separate     0.488 0.332 0.137 6.6%
     rho: t0-separate     0.485 0.330 0.137 6.5%
     rho combined 0.493 0.234 0.137 0.239 0.493 0.234  1.1%
     variance ser 1 0.0400 0.0102 0.0102 0.0073    
     variance ser 2 0.0625 0.0163 0.0159 0.0114    
     covar comb 0.0250 0.0140 0.0102     
480 obs        
     rho: t1-separate     0.499 0.087 0.034 
     rho: t0-separate     0.499 0.086 0.034 
     rho comb 0.499 0.059 0.034 0.060 0.499 0.059  
     variance ser 1 0.0400 0.0026 0.0026 0.0018    
     variance ser 2 0.0625 0.0040 0.0040 0.0029    
     covar comb 0.0250 0.0035 0.0026     
"Theor SE" is the (asymptotic) standard error for the contemporaneous case, with formulae given in the text 
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Table 5 – Simulation Results for 10,000 Trials – σxx=0.0400, σyy=0.0625, ρ=0.5, t1=4/5 

 Pseudo-ML - full data Method-of-Moments 
 Mean StdErr Theor    Theor % not 
   SE ML SEs Mean StdErr SE [-1,+1]

30 obs        
     rho: t1-separate     0.495 0.195 0.137 0.1%
     rho: t0-separate     0.328 0.698 0.137 34.6%
     rho combined 0.495 0.190 0.137 0.177 0.493 0.231  1.0%
     variance ser 1 0.0400 0.0102 0.0102 0.0073    
     variance ser 2 0.0624 0.0163 0.0159 0.0113    
     covar comb 0.0251 0.0122 0.0102     
480 obs        
     rho: t1-separate     0.499 0.048 0.034 
     rho: t0-separate     0.498 0.225 0.034 1.4%
     rho comb 0.500 0.047 0.034 0.045 0.499 0.058  
     variance ser 1 0.0400 0.0026 0.0026 0.0018    
     variance ser 2 0.0625 0.0040 0.0040 0.0028    
     covar comb 0.0250 0.0030 0.0026     
For 30 obs, 19 simulations exited from optimization routine before converging   
"Theor SE" is the (asymptotic) standard error for the contemporaneous case, with formulae given in the text 
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